Lens Rigidity with Trapped Geodesics in Two Dimensions

نویسنده

  • CHRISTOPHER B. CROKE
چکیده

We consider the scattering and lens rigidity of compact surfaces with boundary that have a trapped geodesic. In particular we show that the flat cylinder and the flat Möbius strip are determined by their lens data. We also see by example that the flat Möbius strip is not determined by it’s scattering data. We then consider the case of negatively curved cylinders with convex boundary and show that they are lens rigid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattering and Lens Rigidity

Scattering rigidity of a Riemannian manifold allows one to tell the metric of a manifold with boundary by looking at the directions of geodesics at the boundary. Lens rigidity allows one to tell the metric of a manifold with boundary from the same information plus the length of geodesics. There are a variety of results about lens rigidity but very little is known for scattering rigidity. We wil...

متن کامل

Scattering Data versus Lens Data on Surfaces

The scattering data of a Riemannian manifold with boundary record the incoming and outgoing directions of each geodesic passing through. We show that the scattering data of a generic Riemannian surface with no trapped geodesics and no conjugate points determine the lengths of geodesics. Counterexamples exists when trapped geodesics are allowed.

متن کامل

Scattering Rigidity with Trapped Geodesics

We prove that the flat product metric on D × S is scattering rigid where D is the unit ball in R and n ≥ 2. The scattering data (loosely speaking) of a Riemannian manifold with boundary is map S : U∂M → U−∂M from unit vectors V at the boundary that point inward to unit vectors at the boundary that point outwards. The map (where defined) takes V to γ′ V (T0) where γV is the unit speed geodesic d...

متن کامل

Boundary and Lens Rigidity of Lorentzian Surfaces

LARS ANDERSSON, MATTIAS DAHL, AND RALPH HOWARD Abstract. Let g be a Lorentzian metric on the plane R2 that agrees with the standard metric g0 = −dx + dy outside a compact set and so that there are no conjugate points along any time-like geodesic of (R2 , g). Then (R2 , g) and (R2 , g0) are isometric. Further, if (M, g) and (M∗, g∗) are two dimensional compact time oriented Lorentzian manifolds ...

متن کامل

A Proof of Lens Rigidity in the Category of Analytic Metrics

Consider a compact Riemannian manifold with boundary. If all maximally extended geodesics intersect the boundary at both ends, then to each geodesic γ(t) we can form the triple (γ̇(0), γ̇(T ), T ), consisting of the initial and final vectors of the segment as well as the length between them. The collection of all such triples comprises the lens data. In this paper, it is shown that in the categor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011